Neutron Electric Dipole Moment from Dimension 5 Operators

Tanmoy Bhattacharya^{a,b}

Vincenzo Cirigliano a Rajan Gupta a Emanuele Mereghetti a Boram Yoon a

^aLos Alamos National Laboratory

^bSanta Fe Institute

March 11, 2016

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction Standard model

Standard model of particle physics with neutrino mass

- Explains all laboratory experiments.
- Is in violent contradiction with cosmology.

The universe:

- Can't be big, empty and homogeneous ("inflation")
- Can't have much matter ("baryogenesis")
- Can't clump into clusters of galaxies ("dark matter")
- Can't be accelerating ("dark energy")

Baryogenesis related to matter-antimatter symmetry.

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction

CP violation and nEDM

CP violation needed in the universe.

Observed baryon asymmetry: $n_B/n_{\gamma} = 6.1^{+0.3}_{-0.2} \times 10^{-10}$.

WMAP + COBE 2003

Without CP violation, freezeout ratio: $n_B/n_{\gamma} \approx 10^{-20}$.

Kolb and Turner, Front. Phys. 69 (1990) 1.

Either asymmetric initial conditions or baryogenesis! Sufficiently asymmetric initial conditions kills inflation.

Sakharov Conditions

Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

- Baryon Number violation
- C and CP violation
- Out of equilibrium evolution

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction

Standard Model CP Violation

Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - ullet Gives a tiny $(\sim 10^{-32}\, ext{e-cm})$ contribution to <code>nEDM</code>

Dar arXiv:hep-ph/0008248.

- CP-violating mass term and effective ΘGG interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction Effective Field Theory

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction

Form Factors

Vector form-factors $(V_{\mu} \equiv \delta \mathcal{S}/\delta A_{\mu})$

Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left. \left(2i \, m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \right. \\ &+ \left. \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N = F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment. $F_3(0)/2m_N$ is the electric dipole moment.
- $igcup_{A}$ and F_3 violate P; F_3 violates CP.

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction

Projection

The three point function we calculate is

$$\begin{split} N &\equiv \bar{d}^c \gamma_5 \frac{1+\gamma_4}{2} u \ d \\ \langle \Omega | N(\vec{0},0) V_\mu(\vec{q},t) N^\dagger(\vec{p},T) | \Omega \rangle &= u_N e^{-m_N t} \ \langle N | V_\mu(q) | N' \rangle \ e^{-E_{N'}(T-t)} \overline{u}_N \end{split}$$

We project onto only one component of the neutron spinor with

$$\mathcal{P} = \frac{1}{2}(1+\gamma_4)(1+i\gamma_5\gamma_3)$$

Fermion action is a 'constrained action': equation of motion first order. Mode expansion depends on Lagrangian parameters. On symmetry grounds: $u_N \overline{u}_N = e^{i\alpha_N \gamma_5} (i\not p + m_N) e^{i\alpha_N \gamma_5}$ To extract:

$$\begin{array}{ll} \lim_{T-t\to\infty} \operatorname{Tr} \mathcal{P}\langle \Omega|NV_3N^\dagger|\Omega\rangle & \propto & im_Nq_3G_E \\ \\ & + \alpha_Nm_N(E_N-m_N)F_1 + \alpha_N[m_N(E_N-m_N) + \frac{q_3^2}{2}]F_2 \\ \\ & - 2i\left(q_1^2+q_2^2\right)F_A - \frac{q_3^2}{2}F_3 \end{array}$$

Standard model
CP violation and nEDM
Standard Model CP Violation
Effective Field Theory
Form Factors
Projection
BSM Operators

Introduction BSM Operators

Standard model CP violation in the weak sector. Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\psi \gamma_5 \psi$.
 - Toplogical charge $G_{\mu\nu}\mathring{G}^{\mu\nu}$.
- Suppressed by $v_{\rm EW}/M_{\rm BSM}^2$:
 - Electric Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{F}^{\mu\nu} \psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{
 m EW,BSM}^2$ or higher:
 - Gluon chromo-electric moment: $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}$.
 - Various four-fermi operators.

Renormalization and Mixing Vacuum Alignment and Phase Choice

CP and chiral symmetry do not commute. Outer automorphism: $CP_{\gamma} \equiv \gamma^{-1}CP_{\chi}$ also a CP.

- $\psi_L^{CP} = i \gamma_4 C \bar{\psi}_L^T$ and $\psi_R^{CP} = i \gamma_4 C \bar{\psi}_R^T$.
- $\psi^\chi_L = e^{i\chi}\psi_L$ and $\psi^\chi_R = e^{-i\chi}\psi_R$
- $\psi_L^{CP_\chi}=e^{-2i\chi}i\gamma_4C\bar{\psi}_L^T$ and $\psi_R^{CP_\chi}=e^{+2i\chi}i\gamma_4C\bar{\psi}_R^T$

Consider the chiral and CP violating parts of the action

$$\mathcal{L} \supset d_i^{\alpha} O_i^{\alpha}$$

where i is flavor and α is operator index. Consider only one chiral symmetric CP violating term: $\Theta G \tilde{G}$

Convert to polar basis

$$d_i \equiv |d_i|e^{i\phi_i} \equiv rac{\sum_{lpha} d_i^{lpha} \langle \Omega | \, \mathcal{I}m \, O_i^{lpha} | \pi \rangle}{\sum_{lpha} \langle \Omega | \, \mathcal{I}m \, O_i^{lpha} | \pi \rangle}$$

Then CP violation is proportional to:

$$ar{d}ar{\Theta}\,\mathcal{R}e\,rac{d_i^lpha}{d_i}-|d_i|\,\mathcal{I}m\,rac{d_i^lpha}{d_i}$$

with

$$\frac{1}{\bar{d}} \equiv \sum_{i} \frac{1}{d_i} \qquad \bar{\Theta} = \Theta - \sum_{i} \phi_i$$

CP violation depends on $\overline{\Theta}$ and on a *mismatch* of phases between d_i^{α} and d_i .

Renormalization and Mixing Operator Basis

$$\begin{split} &ig\bar{\psi}\tilde{\sigma}^{\mu\nu}G_{\mu\nu}t^{a}\psi \qquad \partial^{2}\left(\bar{\psi}i\gamma_{5}t^{a}\psi\right) \\ &\frac{ie}{2}\bar{\psi}\tilde{\sigma}^{\mu\nu}F_{\mu\nu}\left\{Q,t^{a}\right\}\psi \\ &\text{Tr}\left[MQ^{2}t^{a}\right]\frac{1}{2}\tilde{F}_{\mu\nu}F^{\mu\nu} \qquad \text{Tr}\left[Mt^{a}\right]\frac{1}{2}\tilde{G}_{\mu\nu}^{a}G^{\mu\nu a} \\ &\text{Tr}\left[Mt^{a}\right]\partial_{\mu}\left(\bar{\psi}\gamma^{\mu}\gamma_{5}\psi\right) \quad \frac{1}{2}\partial_{\mu}\left(\bar{\psi}\gamma^{\mu}\gamma_{5}\left\{M,t^{a}\right\}\psi\right)\Big|_{\text{traceless}} \\ &\frac{1}{2}\bar{\psi}i\gamma_{5}\left\{M^{2},t^{a}\right\}\psi \qquad \text{Tr}\left[M^{2}\right]\bar{\psi}i\gamma_{5}t^{a}\psi \\ &\text{Tr}\left[Mt^{a}\right]\bar{\psi}i\gamma_{5}M\psi \\ &i\bar{\psi}_{E}\gamma_{5}t^{a}\psi_{E} \qquad \text{Re}\,\partial_{\mu}\left[\bar{\psi}_{E}\gamma^{\mu}\gamma_{5}t^{a}\psi\right] \\ &\text{Re}\,\bar{\psi}\gamma_{5}\partial\!\!\!\!/t^{a}\psi_{E} \qquad \text{Re}\,\frac{ie}{2}\bar{\psi}\left\{Q,t^{a}\right\}A^{(\gamma)}\gamma_{5}\psi_{E} \end{split}$$

Renormalization and Mixing

$$\begin{pmatrix} O \\ N \end{pmatrix}_{\text{ren}} = \begin{pmatrix} Z_O & Z_{ON} \\ 0 & Z_N \end{pmatrix} \begin{pmatrix} O \\ N \end{pmatrix}_{\text{bare}}$$

O: Gauge-invariant operators, does not vanish by equation of motion.

N: Gauge-dependent operators, restricted by BRST, vanish by equation of motion.

Impose conditions on matrix elements of quarks and gluons:

- lacksquare Use $\overline{\mathrm{MS}}$ quark masses in the expansion.
- \blacksquare Three point functions at $p^2=p'^2=q^2=-\Lambda^2\ll 0$ (RI-SMOM).
- \blacksquare Four point functions at $p^2=p'^2=k^2=q^2=s=u=t/2=-\Lambda^2.$

This choice eliminates non-1PI contributions. (See arXiv:1502.07325 [hep-ph]).

Vacuum Alignment and Phase Choice Operator Basis RI- $\bar{S}MOM$ scheme Connection to MS scheme

Renormalization and Mixing

Connection to $\overline{\mathrm{MS}}$ scheme

QEDM

Tensor charge

$$\langle N | \frac{\delta \bar{\psi} \Sigma_{\mu\nu} \tilde{F}^{\mu\nu} \psi}{\delta A_{\mu}} | N \rangle \propto \epsilon_{\kappa\lambda\mu\nu} q_{\kappa} \langle N | \bar{\psi} \Sigma_{\lambda\nu} \psi | N \rangle$$

$$\supset \epsilon_{\kappa\lambda\mu\nu} q_{\kappa} \bar{u}_{N} \Sigma_{\lambda\nu} u_{N} \frac{F_{3}}{2m_{N}}$$

Noting that

•
$$\langle N|\bar{\psi}\Sigma_{\lambda\nu}\psi|N\rangle \equiv g_T\,\bar{u}_N\Sigma_{\lambda\nu}u_N$$

•
$$F_3/2m_N \equiv d_N$$
,

we have

$$d_N \propto g_T$$
.

QEDM Excited states

$$C^{3pt} = |\mathcal{A}_{0}|^{2} \langle 0|T|0\rangle e^{-M_{0}t_{sep}} + |\mathcal{A}_{1}|^{2} \langle 1|T|1\rangle e^{-M_{1}t_{sep}} + \mathcal{A}_{0}^{*} \mathcal{A}_{1} \langle 0|T|1\rangle e^{-M_{0}t_{ins} - M_{1}(t_{sep} - t_{ins})} + \mathcal{A}_{1}^{*} \mathcal{A}_{0} \langle 1|T|0\rangle e^{-M_{1}t_{ins} - M_{0}(t_{sep} - t_{ins})}$$

Top line has no dependence on t_{ins} : need multiple t_{sep} . A and M can be obtained from 2-pt functions.

Tensor charge Excited states Renormalization Extrapolation Comparison

Tensor charge Excited states Renormalization Extrapolation Comparison

QEDM Renormalization

PRELIMINARY

RI-SMom scheme: Nonexceptional symmetric momentum matrix element has tree-level value.

QEDM Extrapolation

PRELIMINARY

$$g_T = c_1 + c_2 a + c_3 M_\pi^2 + c_4 e^{-M_\pi L}$$

Tensor charge Excited states Renormalization Extrapolation Comparison

OLD DATA

OLD DATA

QEDM Comparison

OLD DATA

- [1] Bhattacharya et al. 2015 [3] Pitschmann et al. 2014
 - [2] Pospelov-Ritz 2000 [4] Bacchetta et al. 2013
- [5] Anselmino et al. 2013
- [6] Kang et al. 2015

QCEDM: Lattice Calculation

Technique

The quark chromo-EDM operator is a quark bilinear. Schwinger source method: Add it to the Dirac operator in the propagator inversion routine:

$$D \hspace{-0.1cm}/ + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu} \longrightarrow D \hspace{-0.1cm}/ + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon \tilde{G}_{\mu\nu})$$

The fermion determinant gives a 'reweighting factor'

$$\frac{\det(\mathcal{D} + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})}{\det(\mathcal{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})}$$

$$= \exp \operatorname{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\mathcal{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right]$$

$$\approx \exp \left[i\epsilon \operatorname{Tr} \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\mathcal{D} + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1} \right].$$

Technique Three-point function Propagator inversion

QCEDM: Lattice Calculation

Three-point function

The chromoEDM operator is dimension 5.

Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1.$

Need to check linearity.

QCEDM: Lattice Calculation

Propagator inversion

Using BiCGStab in Chroma (Clover on HISQ $a\approx 0.12$ fm, $m_\pi\approx 310$ MeV)

- Cost of \mathcal{D} increases by about 7%.
- Condition number changes by less than 5%.
- Can use $\epsilon = 0$ as initial guess.

Each extra inversion less than the cost of the $\epsilon=0$ inversion.

$$\begin{array}{ccccccc} \text{Accuracy} & \epsilon = 0.005 & \epsilon = 0.01 \\ 10^{-8} & 85\% & 86\% \\ 10^{-3} & 51\% & 66\% \\ 5 \times 10^{-3} & 28\% & 45\% \end{array}$$

Calculation of connected EDM measurement on each configuration is about 1.5 times the cost of V/A form factors measurements.

QCEDM: Numerical Tests

Propagator

QCEDM: Numerical Tests Linearity

QCEDM: Numerical Tests

 F_3 Form factor

Preliminary; Connected Diagrams Only

QCEDM: Conclusions

Future

- Disconnected diagrams.
- Continuum limit.

Most divergent mixing with $\frac{\alpha_s}{a^2}\bar{\psi}\gamma_5\psi$.

nEDM due to this same as due to $\frac{\alpha_s}{ma^2}G \cdot \hat{G}$.

Current estimates of nEDM due to

- CEDM^{MS} $\Rightarrow O(1)$
- $\frac{\alpha_s}{ma^2}\Theta G \cdot \tilde{G} \Rightarrow \frac{O(0.1)}{5\text{MeV}a^2}O(10^{-3})\text{e-fm} = O(1)$

at $a \approx 0.1 \text{fm}$.

Expect O(1-10) cancellation.

Fermions with better chiral symmetry.